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On the Calculation of Phosphorescence Oscillator Strength 
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I t  is pointed out that one of the two commonly used expressions for 
calculating the oscillator strength of phosphorescence transitions is incomplete. 
By using the adequate transition operator, a correction term is added to one of 
the two expressions which then become analytically equivalent up to second 
order in the fine structure constant. 

(Keyword~: Oscillator ~'trength, Phosphorescence) 

Zur Berechnung der Pho~pl~ore~zenzo,~zillatoren~t~irlce 
Es wird darauf hingewiesen,, dal3 eine der beiden in der Literatur ge- 

br&uehliehen Formeln zur Berechnung der Phosphoreszenzoszillatorenst~rke 
unvollst~ndig ist. Wird jedoeh unter Berfleksiehtigung des adfiquaten Uber- 
gangsmomentoperators ein Korrekturterm hinzugeffigt, werden die beiden 
Formeln analytiseh ~quivalent bis zu Termen zweiter Ordnung in der Fein- 
strukturkonstante. 

On treat ing singlet-triplet radiat ive transitions one usually assumes 
a total  Hamiltonian H, whereby the nonrelativistic kinetic and poten- 
tial energy operator  H 0 of the nuclei and the electrons has been 
extended by the spin-orbit  operator  H~o 

H = H0 + Hso (1) 

If" spin-orbit  coupling can be assumed to be a small perturbat ion,  the 
wavefunctions tbr the total  Hamiltonian can be set up by first order 
per turbat ion  theory as linear combinations of spin-pure eigenflmctions 
Ilk > and ]3n > of H0 of different multip]icity and energy 1E~ and 3E~ 

~ i  <anqlH~~ 
!(I)S> = I I S > - - -  3E 0 .lEo s ]3nq> (2a) 

ft q 

I (3)Tq> = [3Tq> - -  ~ <lkIH~~ 
l~o 3~0 I lk> (Yb) 

k ~ ] c - -  ~ T  
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The wave functions of the phosphorescent triplet state and of the 
singlet ground state are marked by multiplicities set in round brackets 
denoting spin-impure states (Hamelca 1967). The triplet components 
are indicated by q. The singlet-triplet oscillator strength is given by the 
transition matr ix element between the two spin-impure states 

2 1 3 
f - 9 A EST ~lq < (1)~ i 7~ l(3)~fJq > 12 (3) 

The three triplet components are assumed to be equally populated. 
Atomic units are used throughout.  

Now the question arises which transition operator is adequate for 
spin-forbidden transitions (Hameka 1965, Hameka and Goodman 1965, 
Lohr 1966, Lohr 1972, Englman 1966, Chiu 1968, Goodman and Laurenzi 
1968, Drake 1972). Hameka and Goodman (1965) used the total electronic 
momentum operator and discussed the transformation of matrix elements 
of the momentum operator to matr ix elements over the electric dipole 
moment  operator for spin-forbidden transitions. Lohr (1966) pointed 
out, that  the extended Hamiltonian (1) contains the momentum not 
only in the kinetic energy part ,  but  also in the spin-orbit term. 
Recalling that  the operator for the interaction with the radiation field is 
derived by stlbstituting the linear momentum by the mechanical 
momentum in the Hamiltonian, Lohr proposed an effective transition 
operator to be used for spin-forbidden transitions, which accounts for 
the momentum dependency of the spin-orbit operator. Hso will now be 
specified as a sum of effective one-electron operators of the form 

~2 

where the summation over j and A includes all electrons and nuclei 

respectively./)3, is the momentum operator and Sj the spin operator for 
electron j ;  ~ is the fine structure constant and ~Aj denotes 

f 

~Aj- 3 (5) 
rAj 

Rewriting (4) as 

~2 

a correction term is derived from the spin-orbit operator to be added to 
the usual momentum operator valid for spin-allowed transition. Hence, 
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the effective transition operator is given by 

~2 

3 j A  

On the other hand, CaCu (1968) as well as Goodman and Laurenzi 
(1968), have shown tha t  the dipole length operator /~ = ~ fy  is the 

d 
correct transition operator 

~. = i [ ( H  0 + H~o), /~J (8 a) 

and hence for eigenfunctions of the Breit-Pauli-Hamiltonian 

= iAEsTi~ (8b) 

Now, in so far as the spin-impure functions (2) set up by first order 
perturbat ion theory can be assumed to be eigenfunctions of the Breit- 
Pauli-Hamiltonian, the operator  containing the dipole length has to be 
used. Taking ~ as in (8 b) and substituting the linear combinations (2) in 
the matrix elements in (3), one obtTains the familiar expression for the 
singlet4riplet oscillator strength [see fbr example Goodman and Lau- 
renzi (1968)]: 

2 3 1 
f =  ~AEsTY, I~IEO aEO <lklH~~ <*Sl~l~lc> 

~naEO__lE o <~nqlH~ollS> <aTql[?lanq> I ~ (9) 

If, however, one substitutes first the linear combinations of spin- 
pure functions in the transition matr ix element, the correct operator ft. 
to be used is the effective operator (7), since the basis functions are 
eigenfunctions of H 0 and not of the total  Hamiltonian (1). Thus, 
another formula for the oscillator strength results 

f _  
2 1 3 1~7 0 1//7 0 

t ~L ~ <lklHso]aTq > <*SI/~ '  l k >  
9AEsT 

3FY 0 31P 0 

3h70 117~0 < 3 n q l ! r - / s o l l S >  <3Tqlj~13nq> (10)  d.. .g 

n ~ n  ~ S  
~2 

+ V < l s l  y, y~ :Aj (~j • L4j) 13G > I ~ 
j A 

The prime indicates tha t  the summands conta.ining the moment  of the 
ground state and of the emitting triplet state are to be excluded. 
Without  the integral in the last line, such a formula has been derived by 
Hameka (1967). The additional term allows a direct coupling between 
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the spin-pure emitting triplet and the spin-pure singlet ground state 
(Lohr 1972). 

An alternative derivation of (10) may be obtained starting from 
(8 a). The matr ix elements of the commutator  [H 0,/)] are given by 
Heisenberg's equation of motion (see Schi f f  1955) 

[H0,~]zm - p~'~ (11) 
i 

where 15 tin, for eigenfunctions of H 0, can be further transformed 

Dlm = - -  i ( E  ~ E~ (12) 

For  the commutator  [Hso,/?] a closed formula may be derived 

c( 2 
[H~o,~]  = - ~ Z F ~ A j ( ~ j  • ; A~) (13) 

" y A  
Collecting matr ix elements of (11) and (12), respectively, as well as 
those for the commutator  (13) and discarding higher order terms, the 
expression (10) for the oscillator strength is obtained again. 

The analytical equivalence up to terms of order z? of the two 
expressions (9) and (10) can be shown in the case of a complete basis 
{1]~} and {3n}. I f  AEs~ is approximated by (1E~176 formula (10) 
may be rewritten so tha t  it differs from (9) by the terms 

~2 

<lZ122;Aj(Z j • fiAj) 3Tq> @ i~  < l Z l / ~ l l ] c >  <lklHso[aTq> 
2 j A k 

- -  i~, <lS]Hsol3nq) <3nq]RI3Tq> (14) 

Using the resolution of the identi ty 

1 = Z l ~ >  <1~,1 + Z Z I % >  < % 1  
k" n q 

and revoking (13), the second and third term in (14) can be seen to 
cancel exactly the commutator  contribution. 
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