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It is pointed out that one of the two commonly used expressions for
ualculatlng the oscillator strength of phosphorescence transitions is incomplete.
By using the adequate transition operator, a correction term is added to one of
the two expressions which then become analytically equivalent up to second
order in the fine structure constant.
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Zur Berechnung der Phosphoreszenzoszillatorensidirke

Es wird daraufl hingewiesen, dall eine der beiden in der Literatur ge-
briuchlichen Formeln zur Berechnung der Phosphoreszenzoszillatorenstarke
unvollstandig ist. Wird jedoch unter Beriicksichtigung des adiquaten Uber-
gangsmomentoperators ein Korrekturterm hinzugefiigt, werden die beiden
Formeln analytisch dquivalent bis zu Termen zweiter Ordnung in der Fein-
strukturkonstante.

On treating singlet-triplet radiative transitions one usually assumes
a total Hamiltonian H, whereby the nonrelativistic kinetic and poten-
tial energy operator H, of the nuclei and the electrons has been
extended by the spin-orbit operator H,

H=H,+ H, (1)

If spin-orbit coupling can be assumed to be a small perturbation. the
wavefunctions for the total Hamiltonian can be set up by first order
perturbation theory as linear combinations of spin-pure eigenfunctions
|1k> and {3n> of H, of different multiplicity and energy 'E% and 3Eg
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The wave functions of the phosphorescent triplet state and of the

singlet ground state are marked by multiplicities set in round brackets

denoting spin-impure states (Hameka 1967). The triplet components

are indicated by ¢. The singlet-triplet oscillator strength is given by the
transition matrix element between the two spin-impure states

1= LS| <osizer,> s

= - < T >

9 A By, ! )

The three triplet components are assumed to be equally populated.
Atomic units are used throughout.

Now the question arises which transition operator is adequate for
spin-forbidden transitions (Hameka 1965, Hameka and Goodman 1965,
Lohr 1966, Lohr 1972, Englman 1966, Chiu 1968, Goodman and Laurenzi
1968, Drake 1972). Hameka and Goodman (1965) used the total electronic
momentum operator and discussed the transformation of matrix elements
of the momentum operator to matrix elements over the electric dipole
moment operator for spin-forbidden transitions. Lohr (1966) pointed
out, that the extended Hamilionian (1) contains the momentum not
only in the kinetic energy part, but also in the spin-orbit term.
Recalling that the.operator for the interaction with the radiation field is
derived by substituting the linear momentum by the mechanical
momentum in the Hamilionian, Lohr proposed an effective transition
operator to be used for spin-forbidden transitions, which accounts for
the momentum dependency of the spin-orbit operator. Hy, will now be
gpecified as a sum of effective one-electron operators of the form

o2

HSO=EZZCAj(TAjXPj)'Sj (4)
j A

where the summation over j and A4 includes all electrons and nuclei

respectively. 13)] is the momentum operator and S”] the spin operator for
electron j; o is the fine structure constant and {,; denotes

Zeff
Caj = 4 (5)
VAj
Rewriting (4) as
o2
HSOZEZZCAJ'(S]. X FAj)'Pj (6)
j 4

a correction term is derived from the spin-orbit operator to be added to
the usual momentum operator valid for spin-allowed transition. Hence,
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the effective transition operator is given by
L2 :
;E:ZP]"‘}‘EZZCA]'(Sj X7 45) (7)
J Jj4

On the other hand, Chiu (1968) as well as Goodman and Laurenzi
(1968), have shown that the dipole length operator R = Y'#; is the

J
correct transition operator

7—%:Z'[(IJO'I”[{SOL R] (8a)
and hence for eigenfunctions of the Breit-Pauli-Hamiltonian
#=iAEgR (8b)

Now, in so far as the spin-impure functions (2) set up by first order
perturbation theory can be assumed to be eigenfunctions of the Breit-
Pauli-Hamiltonian, the operator containing the dipole length has to be
used. Taking # as in (8 b) and substituting the linear combinations (2) in
the matrix elements in (3), one obtains the familiar expression for the
singlet-triplet oscillator strength [see for example Goodman and Lau-
renzt (1968)]:
2 3 1
f= §AESTZ|§M <k |Hg, 3T, > <IS|R|'%>
a
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If, however, one substitutes first the linear combinations of spin-

pure functions in the transition matrix element, the correct operator %

to be used is the effective operator (7), since the basis functions are
eigenfunctions of Hy and not of the total Hamiltonian (1). Thus,
another formula for the oscillator strength results

2 1 3 1E)—1EY
f=o= 2l X i <RI HG 3T, > <IS|R|E>
98 Egr ', v M —2Ey

3E%—‘3E0 P ,
— g <3ng|H, |18 > <37, | R|3n,> (10)
3E2—1Eg 8 q q

J— 7/ Z/
n
o2
t5 <1312§’;Aj(*§j X F 45 |37y > |2
7
The prime indicates that the summands containing the moment of the
ground state and of the emitting triplet state are to be excluded.

Without the integral in the last line, such a formula has been derived by
Hameka (1967). The additional term allows a direct coupling between
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the spin-pure emitting triplet and the spin-pure singlet ground state
(Lohr 1972).

An alternative derivation of (10) may be obtained starting from
(8a). The matrix elements of the commutator [HO;R] are given by
Heisenberg’s equation of motion (see Schiff 1955)

le

[Ho.R]im = (11)

where P,,, for eigenfunctions of Hy, can be further transformed
le :""i(EgL*E?)le (12)

For the commutator [H, R] a closed formula may be derived

o2 .
[HyRB] =~ i;ZZcAj (S; X 7 4) (13)
j A

Collecting matrix elements of (11) and (12), respectively, as well as
those for the commutator (13) and discarding higher order terms, the
expression (10) for the oscillator strength is obtained again.

The analytical equivalence up to terms of order o2 of the two
expressions (9) and (10) can be shown in the case of a complete basis
{1k} and {3n}. If A Egy is approximated by (1ES—3E%), formula (10)
may be rewritten so that it differs from (9) by the terms

2
%<1S|ZZ<AJ(S,. X Fa)3Ty> + 1Y <IS|R|1k> <1k|H|3T,>
j A k
— iy <IS|H|3n,> <3n,|RI13T,> (14)
n

Using the resolution of the identity

L= 1> <|+ )Y |3n,> <3n,]
k n g
and revoking (13), the second and third term in (14) can be seen to
cancel exactly the commutator contribution.
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